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23 R=H 
24 R=CO2CH3 

OCH3 

205°, identical with natural material, mp 172-174°, ac
cording to chromatographic and spectral comparisons. 
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Synthesis of (±)-7/3,8a-Dihydroxy-9ftlO0-epoxy-7,8,-
9,10-tetrahydrobenzo[a]pyrene, a Potential Metabolite of 
the Carcinogen Benzo[a]pyrene with Stereochemistry 
Related to the Antileukemic Triptolides 

Sir: 

The antileukemic diterpenoid triepoxides, triptolide and 
tripdiolide (1), have been suggested1 to effect their high bi
ological activity through alkylation of biologically impor
tant macromolecular thiols at C-9 of the 9,11-epoxide. An-

yl group enhances the rate of epoxide ring opening is also 
known.2 The same stereochemical situation present in trip
tolide, an epoxide ring and a hydroxyl group two positions 
removed on the same face of a six-membered ring, may also 
be invoked to explain the metabolism induced binding3 of 
carcinogenic polycyclic aromatic hydrocarbons to cellular 
macromolecules. We herein describe the synthesis and reac
tions of the title compound, a potential metabolite from the 
environmental carcinogen benzo[a]pyrene (BP). 

Our interest in this synthesis was stimulated by the key 
observation of Borgen et al.4 who demonstrated that trans-
7,8-dihydroxy-7,8-dihydro-BP (2a) was much more exten
sively bound to DNA on further metabolism by liver micro
somes than were either of two other metabolic dihydrodiols 
or BP itself. The above observation was confirmed by Sims 
et al.5 who suggested diol epoxide 3 as the active binding 
agent and claimed its synthesis6 by the action of w-chloro-
peroxybenzoic acid on diol 2a. Although the question of rel-

HO' 

ative stereochemistry between the hydroxyl groups and the 
9,10-oxirane was not considered in this study,5 there is 
ample precedent to expect that epoxidation should occur on 
the face of the molecule which bears the 8-OH7 to produce 
the isomer of diol epoxide 3 in which anchimeric assistance 
of nucleophilic attack on the oxirane by the 7-OH is impos
sible as the oxirane and 7-OH are trans. The corresponding 
epimer of triptolide has low biological activity and is 20-
fold slower on reaction with propanediol.1 The isomeric 
sterol epoxides display an 18-fold difference in rates of re
action with azide.2 

//wtf-l,2-Dihydroxy-l,2-dihydronaphthalenes (2b) was 
chosen as a simple model compound to test possible syn
thetic routes to the isomers of the BP diol epoxide 3. In so
lution, the dihydrodiol prefers the conformation in which 
the hydroxyl groups occupy pseudo-equatorial positions,9 

the conformation in which both hydroxyl groups should act 
in concert7 to direct epoxidation such that the 1-OH and 
the oxirane are trans (Scheme I). Reaction of 2b with m-
chloroperoxybenzoic acid (CH2CI2, 0°, 2 hr) cleanly pro
duced l/3,2a-dihydroxy-3a,4a-epoxy-l,2,3,4-tetrahydro-
naphthalene,10 (4b) in 60% yield (mp 153-155°). As antici
pated, the reaction was highly stereoselective, and only the 
stereoisomer 4b was isolated. 

Scheme I 

chimeric assistance by the proximate 14|8-hydroxyl group 
markedly enhances the rate of adduct formation between 1 
and simple thiols. A steroid in which a neighboring hydrox-

OH 
5a. b 

a = BP series 
b = naphthalene series 

6a, b 
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Synthesis of the stereoisomeric diol epoxide (6b, Scheme 
I,) from 2b presented a synthetic challenge. Fortunately, 
approach of iV-bromoacetamide (NBA) to the diol sub
strate occurs at the same face of the molecule as does 
peroxyacid. Reaction of 2b with NBA (20% aqueous-THF, 
0°, 3 hr) provided the halohydrin 5b (154-156° dec) in 79% 
yield.11 None of the undesired isomer in which the 2-OH 
and 3-Br are trans was detected. Cyclization of 5b to the 
diol epoxide 6b12 was accomplished with Amberlite IRA-
400 (OH form) in dry THF thus generating (95%) the trip-
tolide like stereochemistry. The trimethylsilyl ethers13 of 4 
and 6 were found particularly useful in obtaining spectral 
data. 

Peroxyacid epoxidation of the BP dihydrodiol 2a was 
conducted5 exactly as described (CHCI3, 0° for 48 hr) ex
cept on much larger scale with synthetic diol.14 Direct sily-
lation of the crude reaction mixture in the cold followed by 
mass spectrometry indicated the presence of diol epoxide 3 
(presumably 4a). Work-up as described5 resulted in sub
stantial production of a w-chlorobenzoic acid adduct.15 

Preparative TLC as described5 did not allow identification 
of 3 by mass spectrometry after silylation. Although epox
idation in CHCI3 does appear to proceed cleanly, conditions 
for isolation of pure 3 have yet to be found.24 Rigorous as
signment of the stereochemistry in 3 and the adduct will re
quire further study. 

Synthesis of the triptolide like isomer (6a) proceeded as 
described in the model studies; the halohydrin 5a16 (94% 
from 2a, 128-130° dec) was cyclized to the diol epoxide 
6a17 (85% yield, 226-228° dec) either by treatment with 
the resin or by reaction with 1 equiv of NaH in THF at 0°. 
This compound is extremely reactive but can be stabilized 
as the disilyl ether.18 

Relative reactivity of the diol epoxides 4b (0.22 A/-1 

sec-1), 6b (0.10 M~] sec-1), as well as phenanthrene 9,10-
oxide19 (2.1 M~l sec-1) was established by measurement of 
the second-order rate constants for reaction with p-ni-
trothiophenolate in water-alcohol.20 Failure to observe en
hanced reactivity of 6b relative to 4b in the naphthalene se
ries may be a consequence of conformational effects in 
water-alcohol. Notably, both 1 and the sterol epoxide1,2 are 
locked in the conformation for which hydrogen bonding to 
the epoxide is possible. Accurate comparison of the reactivi
ty of the diol epoxides 4b and 6b (naphthalene-series) with 
6a in water-alcohol is not possible due to a high solvolysis 
rate for 6a. However, 6a is estimated to be more than two 
orders of magnitude more reactive than 4b and 6b. Further 
studies are in progress to establish the origin of this en
hanced reactivity. In tert-butyl alcohol solvent, a high de
gree of anchimeric assistance has been detected in both the 
naphthalene and BP series.24'25 

Examination of the mutagenicity of metabolites of BP 
(phenols and arene oxides) has established that BP 4,5-
oxide is highly mutagenic toward histidine dependent Sal
monella typhimurium and 8-azaguanine sensitive Chinese 
hamster V-79 cells in culture.21 Preliminary studies of diol 
epoxide 6a indicate it is markedly more active (>40 times) 
than BP 4,5-oxide in these tests. In contrast, BP 7,8-oxide is 
the only metabolite of the phenols and arene oxides which 
have been tested22 that displays marked carcinogenicity in 
vivo. Since BP 7,8-oxide may be first hydrated to diol 2a 
and then converted to diol epoxide 6a prior to initiation of 
the oncogenic event, an attractive hypothesis for the mecha
nism of carcinogenesis by BP emerges. Diol 2a functions as 
a stable precarcinogen in the body while the highly reactive 
ultimate carcinogen (6a) is generated in situ, possibly by 
drug metabolizing enzymes in the nuclear envelope sur
rounding DNA. We are presently attempting to establish 
whether 2a and 6a are carcinogens in vivo.23-25 
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Cyclopropa[4,5]benzocyclobutene1 

Sir: 

Benzene has been bent,23 twisted,3 and strained.2 '4 As a 
system it has shown that its properties are remarkably resil
ient to such treatment. One of the more acute sources of 
strain has been provided by annelating benzene with small 
rings. Initial interest was in the fusion of four-membered 
rings as exemplified by the synthesis of benzo[l,2:4,5]dicy-
clobutene,5 but more recently the dramatic success achieved 
in annelating benzene with a three-membered ring6,7 has 
led to a considerable effort in the synthesis of benzocyclo-
propenes.4 We would now like to report a further intensifi
cation of the strain on benzene by the synthesis of cyclopro-
pa[4,5]benzocyclobutene (8),1 the first compound known in 
which benzene is annelated by both a three- and a four-
membered ring. 

Dichlorocarbene addition to the diester 1 was effected by 
the phase transfer method8 using triethylbenzylammonium 
chloride and gave 2 in 85% yield.9-11 Reduction of 2 with 
LiAlH4 in Et2O for 8 hr gave the diol 3, mp 75-79°, 
66%.9 '10 Treatment of 3 with methanesulfonyl chloride, 
NEt 3 at O012 for 30 min, gave the dimesylate 4, mp 99-
100°, 80-8 5%.9'10 Reaction of the diol 3 with thionyl chlo
ride in boiling pyridine for 20 min gave the tetrachloride 5, 
mp 74-75°, 20%.9 1 0 When either the dimesylate 4 or the 
tetrachloride 5 was treated with 3 equiv of KOf-Bu in THF 
at room temperature the diene 6, bp 50-60°, 0.02 mm, was 
obtained in 65% yield.9 The 1H N M R spectrum showed two 
bands at r 4.80 and 5.20 due to the exocyclic methylene 
protons, and the electronic spectrum showed an absorption 
at 243 nm (e 7000).13 Photoirradiation of 6 in pentane with 
an Hanovia 250-W medium pressure lamp through quartz 
under argon for 8 hr gave the cyclobutene 7, bp 40-46°, 
0.01 mm, in 50% yield.9-14 The 1H NMR spectrum showed 

Table I. 13C NMR Shifts in 8, Benzocyclobutene, 
and Benzocyclopropene0 

C-1,2 C-3,6 C-4,5 C-7,8 C-9 Ref 

145.5 110.0 122.8 29.0 19.2 

128.8 114.7 125.4 18.4 21 

145.2 122.1 125.8 29.5 21 

a The numbering of benzocyclopropene has been chosen for ease 
of comparison with 8. 

a singlet (T 7.62) superimposed on a multiplet r 7.4-8.0, 
and a multiplet at r 8.25 in the ratio 4:1, and the 13C N M R 
spectrum showed bands at 19.4, 25.1, 30.3, 66.3, and 137.4 
ppm.15 Treatment of 7 (100 mg, 0.5 mmol) with KOf-Bu 
(225 mg, 2.0 mmol) in DMSO (1 ml)16 gave cyclopropa-
[4,5]benzocyclobutene (8) in 30-40% yield.17 The mass 
spectrum (20 eV) had m/e 116 (M + , 100%), 115 (M - 1, 
95%); high resolution (70 eV) 116.0609 (C9H8 requires 
116.0625). The 1H NMR spectrum showed only two sin
glets at T 3.15 (2 H) and 6.92 (6 H),1 8 and the 13C spec
trum had five absorptions (see Table I). 

The electronic spectrum (cyclohexane) showed a broad 
band with maxima at 284 nm (e ca. log 3.0) 287.5 (e ca. log 
3.0) and 294 ( tea . log 2.8).19-20 
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The above data are clearly in accord with the assigned 

structure. A comparison of the 13C spectrum with those of 
benzocyclopropene21 and benzocyclobutene21 is made in 
Table I. The chemical shifts observed for 8 are very close to 
those observed in these compounds, except that carbons-3,6 
in 8 are at higher field than the corresponding carbon atoms 
in benzocyclopropene and benzocyclobutene.22 This upfield 
shift is presumably due to the increase of strain in 8. 

Treatment of 8 with iodine at room temperature caused 
cleavage of the cyclopropene ring to give 9, mp 138-
1 3 9 o 7,9,10 
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